

THE CURRENT GPM MICROWAVE CONSTELLATION

We want 3-hourly observations, globally
- Sampling the diurnal cycle
- Morphed microwave loses skill outside ±90

The current IMERG constellation includes

- 5 polar-orbit passive microwave imagers
 3 SSMIS, AMSR-2, GMI
 6 polar-orbit passive microwave sounders · 4 MHS, 2 ATMS (SAPHIR not yet
- GPROF (LEO PMW)
- PERSIANN-CCS (GEO infrared)
- GPCP SG (monthly satellite-gauge)

- Legacy satellites are allowed to drift
- exact coverage is a complicated function of
- licate orbits aren't very useful for getting
- GPM fuel will last >10 years, so likely not the
- limiting factor
 Future launch manifests are assured for
 sounders, sparse for imagers

 Microwave Imager (MWI) series –
 EUMETSAT
 Weather System Follow-on-Microwave
 (WSF-M) series DoD

- (W3F-W) Selfes = DBD perhaps at 0535 ECT descending perhaps launching in 2022 Global Change Observation Mission-Water 3 (GCOM-W3) JAXA (under consideration)

[multi-sat.] precipitationCal

[multi-sat. precip] randomError

IRprecipitation

10 precipitationQualityIndex

[PMW] HQprecipSource [identifier]

[phase] probabilityLiquidPrecipitation

IMERG DATASET CHARACTERISTICS

IMERG is a <u>unified U.S. algorithm</u> that takes advantage of the strengths of the partner algorithms

- Kalman Filter CMORPH NOAA/CPC
 PERSIANN with Cloud Classification System U.C.-

- TMPA GSFC Precipitation Processing System (PPS, GSFC) computational environment

IMERG is a single integrated code system appropriate for near-real and post-real time

- "Early" 4 hr (flash flooding)
 "Late" 14 hr (crop forecasting)
- "Final" 3 months (research)
 Time intervals are half-hourly and monthly (Final only)
 0.1" global CED grid
- morphed <u>orecip, 60° N-S</u> in V05, <u>olobal</u> in V06
 IR covers 60° N-S
- User-oriented services by archive sites

 interactive analysis (Giovanni)

 alternate formats (TIFF files, ...)

IMERG is adjusted to GPCP monthly climatology zonally to

- Over Version 04, 05, 06 the GPM core products have similar zonal profiles (by design)
- these profiles are low in the extratropics compared to GPCP monthly Satellite-Gauge product Behrangi Multi-satellite CloudSat, TRMM, Aqua (MCTA) product

IMERG on the Verge of Version 06

George J. Huffman¹, David T. Bolvin^{1,2}, Dan Braithwaite³, Kuolin Hsu³, Robert Joyce^{4,5}, Christopher Kidd^{1,6}, Eric Nelkin^{1,2}, Soroosh Sorooshian³, Jackson Tan^{1,7}, Pingping Xie⁵

- (1) NASA Goddard Space Flight Center
- (2) Science Systems and Applications, Inc. (6) Univ. of Maryland / ESSIC
- (3) Univ. of California Irvine
- (4) Innovim

- (5) NOAA/NWS Climate Prediction Center
- (7) Universities Space Research Assoc.

CPC Number of Gauges

V05 VALIDATION - HURRICANE FLORENCE

- Florence approached the Carolina coast as Category 5 in early September, but then weakened to Category 1. Nonethieless, the forecast of extreme rain totals and extended flooding was accurate.

 Multi-Radar Multi-Sensor (MRMS) considered the best estimate

 some questions about the details of the gauge calibration of the radar estimate
- availability (gauge population figure to the right)
- · limited to land and near-coastal areas

The overall appearance of the IMERG runs is similar to MRMS over land and near-shore waters (above)

- Recall that the major difference is forward-only morphing in Early, but both forward and backward in Late
- for both, there seems to be a shift north of the pattern along the coast (high stern North Carolina and low along the Carolinas' border)
- for both, there is underestimation along the eastern slope of the
- we suspect orgoraphic enhancement not caught in GPROF.

IMERG-F Rel Bias (%)

IMERG-E Correlation

IMERG-I Correlation

Late improves on Early almost everywhere
- this seems to be without regard to degree of bias, across the range of

- does this tell us something about strangeness in the input data?

but a few pockets of low correlation are resistant to change - does this tell us something about MRMS?

and Late still has some fairly fine-scale spatial structure - does this tell us something about MRMS?

- this is an important result for data users

V05 VALIDATION - CONUS

Daily evaluation against Stage IV - 2008-2017 for TMPA, 2014-2017 for IMERG - Evaluated using the Kling-Gupta Efficiency

- Where $r = Pearson correlation, \beta = \frac{\mu_s}{\sigma_{\sigma}/\mu_s}$ and $r = \frac{\sigma_{\sigma}/\mu_s}{\sigma_{\sigma}/\mu_s}$.

 IMERG improves over $1 \text{ M }_r A$ for the same latency
- TMPA calibration stops at 40° N, while IMERG goes to
 - the challenge in V06 is to improve the TRMM era
 - sure) Statistics are shown for 26 datasets satellite with and
 - without gauge, and reanalyses:

 Beck, H., M. Pan, T. Roy, G. Weedon, F. Pappenberger, A
 van Dijk, G.J. Huffman, R.F. Adler, E. Wood, 2018: Daily
 Evaluation of 26 Precipitation Datasets Using Stage-IV Gauge-Radar Data for the CONUS. Hydrol. and Earth Sys. Sci., submitted (and posted at HESSD).

(h) IMERGHHE V05 (n) TMPA-3B42RT V7 (y) TMPA-3B42 V7 (u) IMERGDF V05

VERSION 06 UPGRADES

Morphing vector source switched to MERRA-2/GEOS-5 - see Tan poste

Morphed precip for all non-icy/snowy surfaces, including in polar regions

Full intercalibration to 2BCMB - V05 took shortcuts

Quality Index modified for half-hourly - see below

Modifications for TRMM era - primarily estimating the calibration for the band 35° -65° in both

Revisions to internals raises the maximum precip rate from 50 to 200 mm/hr and no longer discrete

QUALITY INDEX - REVISED IN V06

- approx. Kalman Filter correlation

 based on times to 2 nearest PMWs

 IR at time (when used)
- $QI_h = tanh(\sqrt{\sum arctanh^2(r_i)})$
- where r is correlation, and the i 's are for forward propagation, backward propagation, and IR
 approximate r when a PMW is used for just that satellite
- revised to 0.1° grid (0.25° in V05) thin strips due to inter-swath gaps

Monthly QI (unchanged) - Fourvalent Gauge (Huffman et al. 1997) in gauges / 2.5° x2.5°

- $OI_{--} = (S + r) * H * (1 + 10 * r^2)/e^2$
- error, and H and S are source-specific error constants
- - some residual issues at high values

VERSION 07 CONCEPTS

Multi-satellite issues

- Improve error estimation Develop additional data sets based on observ Work toward a cloud development component in the morphing system
- General precipitation algorithmic issues
- Track quality of PMW retrievals over snow/ice

 Work toward improved wind-loss correction to gauge data

SCHEDULE AND FINAL REMARKS

Early January 2019: begin Version 06 IMERG Initial Processing and Retrospective Processing

- The GPM era will be launched first, Final Run first

 Early and Late retrospective processing use Final intermediate files, so they come after Final
- complete data should take about a month
 except Final is always ~3.5 months behind, so the Early and Late retrospective processing have to wait on Final Initial Processing to fill in the last 3 months of 2018
- The TRMM era will be launched after the GPM era is underway
- the Final-then-Early/Late pacing is true here as well
- 4 km merged global IR data files continue to be delayed for January 1998-January 2000 - the run will build up the requisite 3 months of calibration data starting from February 2000
- the first month of data will be for June 2000 the initial 20 months of data will be incompreted when feasible
- ~2 years later: Version 07